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1 Canonical Bases: The Classical Case

Let g be a simply laced of finite type with Weyl group W.

Theorem 1.1 (Lusztig). Let i be a reduced expression for wy. Let L; = spang,-1 By
(i) The Zq~'] module L is independent of i
(ii) Let m: Ly — ﬁz/q_lﬁg. Then w(B;) is independent of i

Proof. We sketch the steps. Using the braid operators T; one can reduce both statements to the rank
2 case where i = (i,7,1) j = (J,4,7),4-j = —1.

(i) By definition,

L= @  zlg ESY where B = B (BiE; - ¢ B ) B

(c1,c2,c3)ENS

What Lusztig does is to show both Ejf equals £ = spang,-1)CB where

CB={E"EVE" |g>p+r} U{EVEPED |g>p+r} EPEPE"Y = BV E]

by showing that when ¢ > p + 7,

-1 —1 .
n,n n—+r Z f <
E E(q Zan (g—n,n.p—ntr) a, € q 7] ifn<p (1)
1 ifn=p

and similarly with ¢ and j swapped which shows £ C £~ and the other inclusion is clear. Now the trick
is to note that the roles of ¢ and j are symmetric so we will automatically have £> = L as well.

(73) We use the same strategy, showing that 7(B5) = m(CB) for any j. Using Eq. (1) we see that when
q=p+r

®) m(@) @(r)y _ (g—p,p,7) ®) (@) (r)y (p,rg—r)
(LB BV E; )—W(E]—, ), (B BV E) = (B )

<

But notice that because ¢ — p > r we have that

(q—p,p,?”) _ (avbvc)
and similarly one can check that

{merry = et}

and thus 7r(B]~.) = 7(CB) for any j as desired. [
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Section 1.1 Cailan Li Bar Involution

1.1 Bar Involution
Definition 1.2. The bar involution — on Uq(g+) is the Q algebra involution defined on generators by
E; = E; 7=q"'
Definition 1.3. Let M = |®|. Consider the total orders on N >, and >, where
e e>;difcy >dy orcy =dy and (ca,...) > (ca,...), elc.
e e>.difey >dy orepy =dyand (.. ep—1) > (oo dy—1), ete.
Define the partial order @ > d if e >; d and € >, d

Proposition 1.4. For every reduced expression i we have that

BE= B+ 3 (B

e'>e
where rf(q) are Laurent polynomials in q.

Remark. The sum on the RHS above is finite, only @ in the same weight space as @ can appear.

Theorem 1 A
For each reduced expression i of wq there is a unique basis {bf} .y of Uq(g+) contained in L
tle

such that

(i) @ = b5 (self-duality)

(i) b5 = ES + > ail(q)E;f/ where af (q) € ¢ 'Z]q™ "] for any 7. (degree bound)

e’>e
Moreover CBy := {b“?} N is independent on and is called the canonical basis of Uq(g+).
tle
. J

Proof. Existence: Fix @ minimal. Then Proposition 1.4 shows that ETEB = Ef and thus we can set
b® = EZ. Now for e non-minimal by Proposition 1.4 and induction one can write

FE =B+ Y bl ("
e/>e
where the pg(q) are Laurent polynomials. Now by bar invariance of b® and Proposition 1.4 we see that
Ef =Ef= (Eg‘? + ) pE (q)b® ) + Y (g = pE(q) =—ps (¢ )
e'>e e'>e

Because pil(q) are Laurent polynomials it actually follows that

/

P () =af (a7 — afs (@)
where f& (¢) is a polynomial. Now set

e N SR UL

e/ >e
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Section 1.1 Cailan Li Bar Involution

By construction b® satisfies (ii), and we compute

be = (E‘B + D0 a (e~ Z afs (q ) + Z afs (a b

e’ >e e'>e e’ >e

and thus b5 satisfies (i) as well.
Uniqueness: For each Z, b:? is unique by the same argument as for KL basis, look at [EMTW] Chapter 3.

Independence of i: For j # i another reduced expression for wg notice

m(be) = m(BE) L (B = 7 (b)

(2

Because {b:f} is unit triangular to {Ef? } it follows that {b;f} is also a basis for £; and thus
® d __ e (& ® -1 -1
b7 — 0F —Ze:h (@b,  h®(q) € ¢ 'Zlg']
The LHS is bar-invariant and so are the basis vectors on the RHS. This implies h®(q) € ¢ 'Z[g~}] N

qZlg] = 0 as desired. [

Remark. The existence proof above also works for the KL basis, but the construction is more inefficient
than the one in [EMTW].

Remark. Eq. (1) shows that CB = CBy,. All of the above also works for U,(g~) and we will also
write C'By for the canonical basis of Uy(g™).

Corollary 1.5. Let A € AT and let my : Uy(g7) — Uy(g~)/In = L(N\). Then
By ={m\(b) |b € CBy,b ¢ I}
is a basis for L(\).

Proof. Step 1: B) is a basis <= CByN I, spans I as a k v.s. We leave this as an exercise for the

reader. Now write A\ = Z c;w; as a sum of fundamental weights and note
I)\ _ Z U c]+1
Jel
Thus we see that it suffices to show

Step 2: Uy(g™) ]C”L € spany {CB NU,(g") ch+1} Vj. We first need a lemma

Lemma 1.6. Let i be a reduced expression for wo. Suppose that By = si, -+ si,_,(cw,) = ay for
ag € IT a simple root. Then we have that Ffﬁt = F}.

Now notice that

By = Siy "'SiM—l(aiM) = Si "'SiM—lsiM(_aiM) = _wo(aiM)

Note —wg : @+ — &1 and because wy is linear it restricts to —wg : II — II and so —wo(wi,,) = ay for
some £. Thus using the lemma above it follows that
iBm B
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For each j € I, set ay; = —wo(a;). Aswp is the longest element, we can always find a reduced expression
W () for wy which ends in Sk;» 0 that By = —wo(ag,) = ;. It then follows from above that
Fa).pu = i

And since By(;y is a basis for Uy(g™) it follows that

_ ci+1 _ ci+1
Uyg™)Fy7 € spany { By ) NUy(g7) ' |

Let € = (...,enm) E%(j) € Uq(g*)F;ijl = S, (this means ey > ¢; +1). We claim that b%(j) € S;.
Indeed since

b% + Z Eﬁ(j

e'>e

and by definition ¢ > e means that €); > ey > ¢j + 1. Thus all elements on the RHS above are in S;
©

and so b%(j) € S;. Because the change of basis matrix from { B j)} to E%( ;) is upper triangular Vj
and {b% .} = CBy by Theorem 1 and thus

Uy(g7)Fy " e spany {CBy U (a7 EP T} V)
n

Remark. In other words the fact that we had multiple PBW bases for U,(g™ ) was a feature, not a bug
of the theory.

2 The Super Case

2.1 PBW for U,(gl(m|1))

In this section we only work with Ug(gl(m]|1)).

( Theorem 2 (Clark) )

Let C be a super Cartan matriz for Ug(gl(m|1)) and set D = s;(C). Then define T; : Uy(C) —
Uq4(D) as

—FpiKp, if j =i
ES(ECJ) = ED,iEDJ — (_1)pD( i)pp(j ) Z]EDJEDZ Zf_] ~
Ep; it
We omit the definition for the other generators. Then T} is a Zo—algebra isomorphism.
) J

Proposition 2.1 (Clark). The T} satisfy braid relations of type A between appropriate Uy(C), i.e
if i & j, given a super Cartan matriz B, let C = s;(B),D = s;(C), then as maps Uy(B) — Uqy(D)
717 =TT, and similarly with i ~ j.
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( Theorem 3 (Clark) )

Fiz 11 for gl(m|1) and let C = Cry. Fiz a reduced expression i= Siy - .. Sig Jor wo € Spm41. Define
Bl = s -5, (a zt) and let C;, = sg—1- -+ 5, (C) (so C;; = C). Finally let

Ef:,B{I c=Ec

and set
B = { f‘;ﬁE(”). E(“ﬁ%) a; € Z7°,a, < 2if p(BY) = 1}
Then B?H is a (PBW) basis for U, (C).
N J

Remark. Because Ec. , € Ug(Cyz,) = Uy(st-1...54,(C)) we see that
Tis LT (EC;’t,it) € UQ((Sil s Sit—l)(sit—l s 811)(0)) = UQ(C)

1t—1

The miracle is that it’s in fact in U (C).
Example 1. For U,(gl(2]1)) let II = {c, ap} where ay is isotropic. D(II) will then be

O—
Let E(12) = F1FEy — qilEgEl and let 7 = 518981, then
B = {E{"E{yB5|0<a,b<1, r >0}

aka this is exactly the same as for Uy, (sl3) except a,b < 1.

2.2 Canonical Bases: Uy(gl(m|1)) Standard

Theorem 2.2 (Clark). Let i be a reduced expression for wy and fiz I for gl(m|1) to be the standard
Borel, aka the decorated Dynkin diagram will be

Let C? = spanZ[q_l}BZy
(i) The Zq~'] module C? is independent of 7.
(7i) Let 7 : E? — E;H/q_lﬁg. Then W(B?) is independent of 7.

Proof. Like in the classical case it suffices to do this for rank 2. For the standard Borel, there is only
one isotropic root. As in Theorem 1.1 a key input for the proof is prior knowledge of what the canonical
basis of Uq+(g[(2|1)1-[) is. [K]/[CHW3] writes this down as

CByapy, = {EY, BVEs, BB, BB VB> 0}

[CHW3] then does the relevant computation to show these can be written as k—linear sums of elements
in BY. |
7
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Corollary 2.3. Let A € A" for gl(m|1) and let T1 be the standard Borel. Let Ty : U, (gl(m|)n) —
U, (al(m|1)n)/Ix = K(X) where K()) is the Kac module of highest weight X. Then

By = {Wx(b) b € CBgi(mi1)y: 0 & I)\}
is a basis for K(\).

2.3 Canonical Bases: U,(gl(2|1)) all isotropic
Here we have that D(II) is

R

Now when we construct the PBW bases BZP and set L7 = spang, By, L; is dependent on il

Example 2. Let i= 818981 and ; = $951S89. We then compute

EsE{EsF EE-E+E
(BZ)2a1+2a2:{E1E2E1E2, 215201 o L1 L2257 2}

2] T
Fi1E>FE 1 Ey o Ea BB Ey }
2] T

(B7)201+202 = {E2E1E2E1,

And thus
E\E>E L Es o EsE1EyEq
+4q
2] 2]

and so we see that EyEoE) Ey is in neither the Z[g] or the Z[g™'] span of B.

E\EyE By = 2] ( ) — q 2 (EyF By Ey)
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