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1 Canonical Bases: The Classical Case

Let g be a simply laced of finite type with Weyl group W .

Theorem 1.1 (Lusztig). Let i⃗ be a reduced expression for w0. Let L⃗i = spanZ[q−1]B⃗i

(i) The Z[q−1] module L⃗i is independent of i⃗.

(ii) Let π : L⃗i → L⃗i/q−1L⃗i. Then π(B⃗i) is independent of i⃗.

Proof. We sketch the steps. Using the braid operators Ti one can reduce both statements to the rank
2 case where i⃗ = (i, j, i) j⃗ = (j, i, j), i · j = −1.

(i) By definition,

Lj⃗ =
⊕

(c1,c2,c3)∈N3

Z[q−1]E(c1,c2,c3)
j⃗

where E
(c1,c2,c3)
j⃗

= E
(c1)
j (EiEj − q−1EjEi)(c2)E

(c3)
i

What Lusztig does is to show both Lj⃗ equals L = spanZ[q−1]CB where

CB =
{

E
(p)
i E

(q)
j E

(r)
i |q ≥ p + r

}
∪

{
E

(p)
j E

(q)
i E

(r)
j |q ≥ p + r

}
E

(a)
i E

(b)
j E

(b−a)
i = E

(b−a)
j E

(b)
i E

(a)
j

by showing that when q ≥ p + r,

E
(p)
i E

(q)
j E

(r)
i =

p∑
n=0

anE
(q−n,n,p−n+r)
j⃗

an ∈

q−1Z[q−1] if n < p

1 if n = p
(1)

and similarly with i and j swapped which shows L ⊆ Lj⃗ and the other inclusion is clear. Now the trick
is to note that the roles of i and j are symmetric so we will automatically have L⃗i = L as well.

(ii) We use the same strategy, showing that π(Bj⃗) = π(CB) for any j⃗. Using Eq. (1) we see that when
q ≥ p + r

π(E(p)
i E

(q)
j E

(r)
i ) = π(E(q−p,p,r)

j⃗
), π(E(p)

j E
(q)
i E

(r)
j ) = π(E(p,r,q−r)

j⃗
)

But notice that because q − p ≥ r we have that{
π(E(q−p,p,r)

j⃗
)
}

q−p≥r
=

{
π(E(a,b,c)

j⃗
)
}

a≥c

and similarly one can check that{
π(E(p,r,q−r)

j⃗
)
}

q−p≥r
=

{
π(E(a,b,c)

j⃗
)
}

a≤c

and thus π(Bj⃗) = π(CB) for any j⃗ as desired. ■
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Section 1.1 Cailan Li Bar Involution

1.1 Bar Involution

Definition 1.2. The bar involution on Uq(g+) is the Q algebra involution defined on generators by

Ei = Ei, q = q−1

Definition 1.3. Let M = |Φ+|. Consider the total orders on NM >l and >r where

• e >l d if c1 > d1 or c1 = d1 and (c2, . . .) >l (c2, . . .), etc.

• e >r d if cM > dM or cM = dM and (. . . , cM−1) >r (. . . , dM−1), etc.

Define the partial order e > d if e >l d and e >r d

Proposition 1.4. For every reduced expression i⃗ we have that

Ee

i⃗
= Ee

i⃗
+

∑
e′>e

re
′
e (q)Ee′

i⃗

where re
′
e (q) are Laurent polynomials in q.

Remark. The sum on the RHS above is finite, only e
′ in the same weight space as e can appear.

Theorem 1
For each reduced expression i⃗ of w0 there is a unique basis

{
be

i⃗

}
e∈NM

of Uq(g+) contained in L
such that

(i) be
i⃗

= be
i⃗

(self-duality)

(ii) be
i⃗

= Ee

i⃗
+

∑
e′>e

ae
′
e (q)Ee′

i⃗
where ae

′
e (q) ∈ q−1Z[q−1] for any i⃗. (degree bound)

Moreover CBg :=
{

be
i⃗

}
e∈NM

is independent of i⃗ and is called the canonical basis of Uq(g+).

Proof. Existence: Fix e minimal. Then Proposition 1.4 shows that Ee

i⃗
= Ee

i⃗
and thus we can set

be = Ee

i⃗
. Now for e non-minimal by Proposition 1.4 and induction one can write

Ee

i⃗
= Ee

i⃗
+

∑
e′>e

pe
′
e (q)be′

where the pe
′
e (q) are Laurent polynomials. Now by bar invariance of be

′ and Proposition 1.4 we see that

Ee

i⃗
= Ee

i⃗
=

Ee

i⃗
+

∑
e′>e

pe
′
e (q)be′

 +
∑
e′>e

pe
′
e (q−1)be′ =⇒ pe

′
e (q) = −pe

′
e (q−1)

Because pe
′
e (q) are Laurent polynomials it actually follows that

pe
′
e (q) = q−1fe

′
e (q−1) − qfe

′
e (q)

where fe
′

e (q) is a polynomial. Now set

be
i⃗

= Ee

i⃗
+

∑
e′>e

q−1fe
′

e (q−1)be′

i⃗
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Section 1.1 Cailan Li Bar Involution

By construction be satisfies (ii), and we compute

be
i⃗

=

Ee

i⃗
+

∑
e′>e

q−1fe
′

e (q−1)be′

i⃗
−

∑
e′>e

qfe
′

e (q)be′

i⃗

 +
∑
e′>e

qfe
′

e (q)be′ = be
i⃗

and thus be
i⃗

satisfies (i) as well.

Uniqueness: For each i⃗, be
i⃗

is unique by the same argument as for KL basis, look at [EMTW] Chapter 3.

Independence of i⃗: For j⃗ ̸= i⃗ another reduced expression for w0 notice

π(be
i⃗
) = π(Ee

i⃗
) T heorem 1.1=== π(Ed

j⃗
) = π(bd

j⃗
)

Because
{

be
i⃗

}
is unit triangular to

{
Ee

i⃗

}
it follows that

{
be

i⃗

}
is also a basis for L⃗i and thus

be
i⃗

− bd
j⃗

=
∑
e

he(q)be
i⃗
, he(q) ∈ q−1Z[q−1]

The LHS is bar-invariant and so are the basis vectors on the RHS. This implies he(q) ∈ q−1Z[q−1] ∩
qZ[q] = 0 as desired. ■

Remark. The existence proof above also works for the KL basis, but the construction is more inefficient
than the one in [EMTW].

Remark. Eq. (1) shows that CB = CBsl3 . All of the above also works for Uq(g−) and we will also
write CBg for the canonical basis of Uq(g−).

Corollary 1.5. Let λ ∈ Λ+ and let πλ : Uq(g−) → Uq(g−)/Iλ = L(λ). Then

Bλ = {πλ(b) |b ∈ CBg, b ̸∈ Iλ}

is a basis for L(λ).

Proof. Step 1: Bλ is a basis ⇐⇒ CBg ∩ Iλ spans Iλ as a k v.s. We leave this as an exercise for the
reader. Now write λ =

∑
ciωi as a sum of fundamental weights and note

Iλ =
∑
j∈I

Uq(g−)F cj+1
j

Thus we see that it suffices to show
Step 2: Uq(g−)F cj+1

j ∈ spank
{

CBg ∩ Uq(g−)F cj+1
j

}
∀j. We first need a lemma

Lemma 1.6. Let i⃗ be a reduced expression for w0. Suppose that βt = si1 · · · sit−1(αit) = αk for
αk ∈ Π a simple root. Then we have that F⃗i,βt

= Fk.
Now notice that

βM = si1 · · · siM−1(αiM ) = si1 · · · siM−1siM (−αiM ) = −w0(αiM )

Note −w0 : Φ+ → Φ+ and because w0 is linear it restricts to −w0 : Π → Π and so −w0(αiM ) = αℓ for
some ℓ. Thus using the lemma above it follows that

F⃗i,βM
= Fℓ
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Section 2.1 Cailan Li The Super Case

For each j ∈ I, set αkj
= −w0(αj). As w0 is the longest element, we can always find a reduced expression

−→w (j) for w0 which ends in skj
, so that βM = −w0(αkj

) = αj . It then follows from above that

F−→w (j),βM
= Fj

And since B−→w (j) is a basis for Uq(g−) it follows that

Uq(g−)F cj+1
j ∈ spank

{
B−→w (j) ∩ Uq(g−)F cj+1

j

}
Let e = (. . . , eM ) Ee−→w (j) ∈ Uq(g−)F cj+1

j = Sj (this means eM ≥ cj + 1). We claim that be−→w (j) ∈ Sj .
Indeed since

be−→w (j) = Ee−→w (j) +
∑
e′>e

ae
′
e (q)Ee′

−→w (j)

and by definition e
′ > e means that e′

M > eM ≥ cj + 1. Thus all elements on the RHS above are in Sj

and so be−→w (j) ∈ Sj . Because the change of basis matrix from
{

be−→w (j)

}
to Ee−→w (j) is upper triangular ∀j

and
{

be−→w (j)

}
= CBg by Theorem 1 and thus

Uq(g−)F cj+1
j ∈ spank

{
CBg ∩ Uq(g−)F cj+1

j

}
∀j

■

Remark. In other words the fact that we had multiple PBW bases for Uq(g−) was a feature, not a bug
of the theory.

2 The Super Case

2.1 PBW for Uq(gl(m|1))

In this section we only work with Uq(gl(m|1)).

Theorem 2 (Clark)
Let C be a super Cartan matrix for Uq(gl(m|1)) and set D = si(C). Then define T s

i : Uq(C) →
Uq(D) as

T s
i (EC,j) =


−FD,iKD,i if j = i

ED,iED,j − (−1)pD(i)pD(j)qDij ED,jED,i if j ∼ i

ED,j if j ̸∼ i

We omit the definition for the other generators. Then T s
i is a Z2−algebra isomorphism.

Proposition 2.1 (Clark). The T s
i satisfy braid relations of type A between appropriate Uq(C), i.e.

if i ̸∼ j, given a super Cartan matrix B, let C = si(B), D = sj(C), then as maps Uq(B) → Uq(D)
T s

i T s
j = T s

j T s
i , and similarly with i ∼ j.
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Section 2.2 Cailan Li Canonical Bases: Uq(gl(m|1)) Standard

Theorem 3 (Clark)
Fix Π for gl(m|1) and let C = CΠ. Fix a reduced expression i⃗ = si1 . . . siK for w0 ∈ Sm+1. Define
βΠ

t = si1 · · · sit−1(αΠ
it

) and let C⃗i,t = st−1 · · · si1(C) (so C⃗i,1 = C). Finally let

E⃗i:βΠ
1

: = EC,i1

E⃗i:βΠ
2

: = T s
i1(EC⃗i,2,i2)

...
E⃗i:βΠ

t
: = T s

i1 . . . T s
it−1(EC⃗i,t,it)

...

and set
BΠ

i⃗
=

{
E

(a1)
i⃗:βΠ

1
E

(a2)
i⃗:βΠ

2
· · · E

(aL)
i⃗:βΠ

L

∣∣∣ai ∈ Z≥0, as < 2 if p(βΠ
s ) = 1

}
Then BΠ

i⃗
is a (PBW) basis for U+

q (C).

Remark. Because EC⃗i,t,it ∈ Uq(C⃗i,t) = Uq(st−1 . . . si1(C)) we see that

T s
i1 . . . T s

it−1(EC⃗i,t,it) ∈ Uq((si1 . . . sit−1)(sit−1 . . . si1)(C)) = Uq(C)

The miracle is that it’s in fact in U+
q (C).

Example 1. For Uq(gl(2|1)) let Π = {α1, α2} where α2 is isotropic. D(Π) will then be

Let E(12) = E1E2 − q−1E2E1 and let i⃗ = s1s2s1, then

BΠ
i⃗

=
{

E
(r)
1 Eb

(12)E
a
2 | 0 ≤ a, b ≤ 1, r ≥ 0

}
aka this is exactly the same as for Uq(sl3) except a, b ≤ 1.

2.2 Canonical Bases: Uq(gl(m|1)) Standard

Theorem 2.2 (Clark). Let i⃗ be a reduced expression for w0 and fix Π for gl(m|1) to be the standard
Borel, aka the decorated Dynkin diagram will be

· · ·

Let LΠ
i⃗

= spanZ[q−1]B
Π
i⃗

(i) The Z[q−1] module LΠ
i⃗

is independent of i⃗.

(ii) Let π : LΠ
i⃗

→ LΠ
i⃗

/q−1LΠ
i⃗

. Then π(BΠ
i⃗

) is independent of i⃗.

Proof. Like in the classical case it suffices to do this for rank 2. For the standard Borel, there is only
one isotropic root. As in Theorem 1.1 a key input for the proof is prior knowledge of what the canonical
basis of U+

q (gl(2|1)Π) is. [K]/[CHW3] writes this down as

CBgl(2|1)Π =
{

E
(r)
1 , E

(r)
1 E2, E2E

(r+1)
1 , E2E

(r+1)
1 E2|r ≥ 0

}
[CHW3] then does the relevant computation to show these can be written as k−linear sums of elements
in BΠ

i⃗
. ■
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Section 2.3 Cailan Li Canonical Bases: Uq(gl(2|1)) all isotropic

Corollary 2.3. Let λ ∈ Λ+ for gl(m|1) and let Π be the standard Borel. Let πλ : U−
q (gl(m|1)Π) →

U−
q (gl(m|1)Π)/Iλ = K(λ) where K(λ) is the Kac module of highest weight λ. Then

Bλ =
{

πλ(b) |b ∈ CBgl(m|1)Π , b ̸∈ Iλ

}
is a basis for K(λ).

2.3 Canonical Bases: Uq(gl(2|1)) all isotropic

Here we have that D(Π) is

Now when we construct the PBW bases BΠ
i⃗

and set L⃗i = spanZ[q]B⃗i, L⃗i is dependent on i⃗!

Example 2. Let i⃗ = s1s2s1 and j⃗ = s2s1s2. We then compute

(B⃗i)2α1+2α2 =
{

E1E2E1E2,
E2E1E2E1

[2] + q2 E1E2E1E2
[2]

}
(Bj⃗)2α1+2α2 =

{
E2E1E2E1,

E1E2E1E2
[2] + q2 E2E1E2E1

[2]

}
And thus

E1E2E1E2 = [2]
(

E1E2E1E2
[2] + q2 E2E1E2E1

[2]

)
− q−2 (E2E1E2E1)

and so we see that E1E2E1E2 is in neither the Z[q] or the Z[q−1] span of Bj⃗ .
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