Canonical Bases for $U_{q}(\mathfrak{g l}(m \mid 1))$

Cailan Li

March 22nd, 2023

1 Canonical Bases: The Classical Case

Let \mathfrak{g} be a simply laced of finite type with Weyl group W.
Theorem 1.1 (Lusztig). Let \vec{i} be a reduced expression for w_{0}. Let $\mathcal{L}_{\vec{i}}=\operatorname{span}_{\mathbb{Z}\left[q^{-1}\right]} B_{\vec{i}}$
(i) The $\mathbb{Z}\left[q^{-1}\right]$ module $\mathcal{L}_{\vec{i}}$ is independent of \vec{i}.
(ii) Let $\pi: \mathcal{L}_{\vec{i}} \rightarrow \mathcal{L}_{\vec{i}} / q^{-1} \mathcal{L}_{\vec{i}}$. Then $\pi\left(B_{\vec{i}}\right)$ is independent of \vec{i}.

Proof. We sketch the steps. Using the braid operators T_{i} one can reduce both statements to the rank 2 case where $\vec{i}=(i, j, i) \vec{j}=(j, i, j), i \cdot j=-1$.
(i) By definition,

$$
\mathcal{L}_{\vec{j}}=\bigoplus_{\left(c_{1}, c_{2}, c_{3}\right) \in \mathbb{N}^{3}} \mathbb{Z}\left[q^{-1}\right] E_{\vec{j}}^{\left(c_{1}, c_{2}, c_{3}\right)} \quad \text { where } E_{\vec{j}}^{\left(c_{1}, c_{2}, c_{3}\right)}=E_{j}^{\left(c_{1}\right)}\left(E_{i} E_{j}-q^{-1} E_{j} E_{i}\right)^{\left(c_{2}\right)} E_{i}^{\left(c_{3}\right)}
$$

What Lusztig does is to show both $\mathcal{L}_{\vec{j}}$ equals $\mathcal{L}=\operatorname{span}_{\mathbb{Z}\left[q^{-1}\right]} C B$ where

$$
C B=\left\{E_{i}^{(p)} E_{j}^{(q)} E_{i}^{(r)} \mid q \geq p+r\right\} \cup\left\{E_{j}^{(p)} E_{i}^{(q)} E_{j}^{(r)} \mid q \geq p+r\right\} \quad E_{i}^{(a)} E_{j}^{(b)} E_{i}^{(b-a)}=E_{j}^{(b-a)} E_{i}^{(b)} E_{j}^{(a)}
$$

by showing that when $q \geq p+r$,

$$
E_{i}^{(p)} E_{j}^{(q)} E_{i}^{(r)}=\sum_{n=0}^{p} a_{n} E_{\vec{j}}^{(q-n, n, p-n+r)} \quad a_{n} \in \begin{cases}q^{-1} \mathbb{Z}\left[q^{-1}\right] & \text { if } n<p \tag{1}\\ 1 & \text { if } n=p\end{cases}
$$

and similarly with i and j swapped which shows $\mathcal{L} \subseteq \mathcal{L}_{\vec{j}}$ and the other inclusion is clear. Now the trick is to note that the roles of i and j are symmetric so we will automatically have $\mathcal{L}_{\vec{i}}=\mathcal{L}$ as well.
(ii) We use the same strategy, showing that $\pi\left(B_{\vec{j}}\right)=\pi(C B)$ for any \vec{j}. Using Eq. (1) we see that when $q \geq p+r$

$$
\pi\left(E_{i}^{(p)} E_{j}^{(q)} E_{i}^{(r)}\right)=\pi\left(E_{\vec{j}}^{(q-p, p, r)}\right), \quad \pi\left(E_{j}^{(p)} E_{i}^{(q)} E_{j}^{(r)}\right)=\pi\left(E_{\vec{j}}^{(p, r, q-r)}\right)
$$

But notice that because $q-p \geq r$ we have that

$$
\left\{\pi\left(E_{\vec{j}}^{(q-p, p, r)}\right)\right\}_{q-p \geq r}=\left\{\pi\left(E_{\vec{j}}^{(a, b, c)}\right)\right\}_{a \geq c}
$$

and similarly one can check that

$$
\left\{\pi\left(E_{\vec{j}}^{(p, r, q-r)}\right)\right\}_{q-p \geq r}=\left\{\pi\left(E_{\vec{j}}^{(a, b, c)}\right)\right\}_{a \leq c}
$$

and thus $\pi\left(B_{\vec{j}}\right)=\pi(C B)$ for any \vec{j} as desired.

1.1 Bar Involution

Definition 1.2. The bar involution - on $U_{q}\left(\mathfrak{g}^{+}\right)$is the \mathbb{Q} algebra involution defined on generators by

$$
\overline{E_{i}}=E_{i}, \quad \bar{q}=q^{-1}
$$

Definition 1.3. Let $M=\left|\Phi^{+}\right|$. Consider the total orders on $\mathbb{N}^{M}>_{l}$ and $>_{r}$ where

- $\mathbb{e}>_{l}$ d if $c_{1}>d_{1}$ or $c_{1}=d_{1}$ and $\left(c_{2}, \ldots\right)>_{l}\left(c_{2}, \ldots\right)$, etc.
- $\mathbb{e}>_{r} \mathbb{d}$ if $c_{M}>d_{M}$ or $c_{M}=d_{M}$ and $\left(\ldots, c_{M-1}\right)>_{r}\left(\ldots, d_{M-1}\right)$, etc.

Define the partial order $\mathbb{e}>\mathbb{d}$ if $\mathbb{e}>_{l} \mathbb{d}$ and $\mathbb{e}>_{r} \mathbb{d}$
Proposition 1.4. For every reduced expression \vec{i} we have that

$$
\overline{E_{i}^{\mathbb{e}}}=E_{\vec{i}}^{\mathbb{e}}+\sum_{\mathbb{e}^{\prime}>\mathbb{e}} r_{\mathbb{e}}^{\mathrm{e}^{\prime}}(q) E_{\vec{i}}^{\mathbb{e}^{\prime}}
$$

where $r_{\mathrm{e}}^{\mathrm{e}^{\prime}}(q)$ are Laurent polynomials in q.
Remark. The sum on the RHS above is finite, only \mathbb{e}^{\prime} in the same weight space as \mathbb{e} can appear.

Theorem 1

For each reduced expression \vec{i} of w_{0} there is a unique basis $\left\{b_{\vec{i}}^{\mathbb{e}}\right\}_{\mathfrak{e} \in \mathbb{N}^{M}}$ of $U_{q}\left(\mathfrak{g}^{+}\right)$contained in \mathcal{L} such that
(i) $\overline{b_{\vec{i}}^{\stackrel{e}{e}}}=b_{\vec{i}}^{\text {e }}$ (self-duality)
(ii) $b_{\vec{i}}^{\mathbb{e}}=E_{\vec{i}}^{\mathbb{e}}+\sum_{\mathbb{e}^{\prime}>\mathbb{C}} a_{\mathbb{e}}^{\mathbb{e}^{\prime}}(q) E_{i}^{\mathbb{Q}^{\prime}}$ where $a_{\mathbb{e}}^{\mathbb{e}^{\prime}}(q) \in q^{-1} \mathbb{Z}\left[q^{-1}\right]$ for any \vec{i}. (degree bound)

Moreover $C B_{\mathfrak{g}}:=\left\{b_{i}^{\mathbb{e}}\right\}_{\mathbb{e} \in \mathbb{N}^{M}}$ is independent of \vec{i} and is called the canonical basis of $U_{q}\left(\mathfrak{g}^{+}\right)$.

Proof. Existence: Fix e minimal. Then Proposition 1.4 shows that $\overline{E_{\vec{i}}^{e}}=E_{\vec{i}}^{e}$ and thus we can set $b^{\mathrm{e}}=E_{\vec{i}}^{\mathrm{e}}$. Now for e non-minimal by Proposition 1.4 and induction one can write

$$
\overline{E_{i}^{\mathrm{e}}}=E_{i}^{\mathrm{e}}+\sum_{\mathbb{e}^{\prime}>\mathbb{e}} p_{\mathbb{e}}^{\mathbb{e}^{\prime}}(q) b^{\mathbb{e}^{\prime}}
$$

where the $p_{\mathrm{e}}^{\mathrm{e}^{\prime}}(q)$ are Laurent polynomials. Now by bar invariance of $b^{\mathrm{e}^{\prime}}$ and Proposition 1.4 we see that

$$
E_{\vec{i}}^{\mathbb{e}}=\overline{\overline{E_{i}^{\mathrm{e}}}}=\left(E_{i}^{\mathrm{e}}+\sum_{\mathbb{e}^{\prime}>\mathbb{e}} p_{\mathrm{e}}^{\mathrm{e}^{\prime}}(q) b^{\mathbb{e}^{\prime}}\right)+\sum_{\mathbb{e}^{\prime}>\mathbb{e}} p_{\mathrm{e}}^{\mathrm{e}^{\prime}}\left(q^{-1}\right) b^{\mathrm{e}^{\prime}} \Longrightarrow p_{\mathrm{e}}^{\mathrm{e}^{\prime}}(q)=-p_{\mathrm{e}}^{\mathrm{e}^{\prime}}\left(q^{-1}\right)
$$

Because $p_{\mathrm{e}}^{\mathrm{e}^{\prime}}(q)$ are Laurent polynomials it actually follows that

$$
p_{\mathrm{e}}^{\mathrm{e}^{\mathrm{e}^{\prime}}}(q)=q^{-1} f_{\mathrm{e}}^{\mathrm{e}^{\prime}}\left(q^{-1}\right)-q f_{\mathrm{e}}^{\mathrm{e}^{\prime}}(q)
$$

where $f_{\mathrm{e}}^{\mathrm{e}^{\mathrm{e}^{\prime}}}(q)$ is a polynomial. Now set

$$
b_{i}^{\varrho}=E_{i}^{\mathrm{e}}+\sum_{\mathbb{e}^{\prime}>\mathbb{e}} q^{-1} f_{\mathbb{e}}^{\mathrm{e}^{\prime}}\left(q^{-1}\right) b_{i}^{\mathrm{e}^{\prime}}
$$

By construction $b^{\text {e }}$ satisfies（ $i i$ ），and we compute
and thus b_{i}^{ϱ} satisfies (i) as well．
Uniqueness：For each $\vec{i}, b_{i}^{巴}$ is unique by the same argument as for KL basis，look at［EMTW］Chapter 3. Independence of \vec{i} ：For $\vec{j} \neq \vec{i}$ another reduced expression for w_{0} notice

$$
\pi\left(b_{i}^{\mathrm{e}}\right)=\pi\left(E_{\vec{i}}^{\mathrm{e}}\right)^{\text {Theorem }}{ }^{1.1} \pi\left(E_{\vec{j}}^{\mathrm{d}}\right)=\pi\left(b_{\vec{j}}^{\mathrm{d}}\right)
$$

Because $\left\{b_{\vec{i}}^{\mathbb{e}}\right\}$ is unit triangular to $\left\{E_{\vec{i}}^{\mathbb{e}}\right\}$ it follows that $\left\{b_{\vec{i}}^{\mathbb{e}}\right\}$ is also a basis for $\mathcal{L}_{\vec{i}}$ and thus

$$
b_{\vec{i}}^{巴}-b_{\vec{j}}^{\mathrm{d}}=\sum_{\odot} h^{巴}(q) b_{\vec{i}}^{巴}, \quad h^{巴}(q) \in q^{-1} \mathbb{Z}\left[q^{-1}\right]
$$

The LHS is bar－invariant and so are the basis vectors on the RHS．This implies $h^{巴}(q) \in q^{-1} \mathbb{Z}\left[q^{-1}\right] \cap$ $q \mathbb{Z}[q]=0$ as desired．

Remark．The existence proof above also works for the KL basis，but the construction is more inefficient than the one in［EMTW］．

Remark．Eq．（1）shows that $C B=C B_{\mathfrak{s l}_{3}}$ ．All of the above also works for $U_{q}\left(\mathfrak{g}^{-}\right)$and we will also write $C B_{\mathfrak{g}}$ for the canonical basis of $U_{q}\left(\mathfrak{g}^{-}\right)$．

Corollary 1．5．Let $\lambda \in \Lambda^{+}$and let $\pi_{\lambda}: U_{q}\left(\mathfrak{g}^{-}\right) \rightarrow U_{q}\left(\mathfrak{g}^{-}\right) / I_{\lambda}=L(\lambda)$ ．Then

$$
B_{\lambda}=\left\{\pi_{\lambda}(b) \mid b \in C B_{\mathfrak{g}}, b \notin I_{\lambda}\right\}
$$

is a basis for $L(\lambda)$ ．
Proof．Step 1：B_{λ} is a basis $\Longleftrightarrow C B_{\mathfrak{g}} \cap I_{\lambda}$ spans I_{λ} as a \mathbb{k} v．s．We leave this as an exercise for the reader．Now write $\lambda=\sum c_{i} \omega_{i}$ as a sum of fundamental weights and note

$$
I_{\lambda}=\sum_{j \in I} U_{q}\left(\mathfrak{g}^{-}\right) F_{j}^{c_{j}+1}
$$

Thus we see that it suffices to show
Step 2：$U_{q}\left(\mathfrak{g}^{-}\right) F_{j}^{c_{j}+1} \in \operatorname{span}_{\mathbb{k}}\left\{C B_{\mathfrak{g}} \cap U_{q}\left(\mathfrak{g}^{-}\right) F_{j}^{c_{j}+1}\right\} \forall j$ ．We first need a lemma
Lemma 1．6．Let \vec{i} be a reduced expression for w_{0} ．Suppose that $\beta_{t}=s_{i_{1}} \cdots s_{i_{t-1}}\left(\alpha_{i_{t}}\right)=\alpha_{k}$ for $\alpha_{k} \in \Pi$ a simple root．Then we have that $F_{\vec{i}, \beta_{t}}=F_{k}$ ．
Now notice that

$$
\beta_{M}=s_{i_{1}} \cdots s_{i_{M-1}}\left(\alpha_{i_{M}}\right)=s_{i_{1}} \cdots s_{i_{M-1}} s_{i_{M}}\left(-\alpha_{i_{M}}\right)=-w_{0}\left(\alpha_{i_{M}}\right)
$$

Note $-w_{0}: \Phi^{+} \rightarrow \Phi^{+}$and because w_{0} is linear it restricts to $-w_{0}: \Pi \rightarrow \Pi$ and so $-w_{0}\left(\alpha_{i_{M}}\right)=\alpha_{\ell}$ for some ℓ ．Thus using the lemma above it follows that

$$
F_{\vec{i}, \beta_{M}}=F_{\ell}
$$

For each $j \in I$, set $\alpha_{k_{j}}=-w_{0}\left(\alpha_{j}\right)$. As w_{0} is the longest element, we can always find a reduced expression $\vec{w}(j)$ for w_{0} which ends in $s_{k_{j}}$, so that $\beta_{M}=-w_{0}\left(\alpha_{k_{j}}\right)=\alpha_{j}$. It then follows from above that

$$
F_{\vec{w}(j), \beta_{M}}=F_{j}
$$

And since $B_{\vec{w}(j)}$ is a basis for $U_{q}\left(\mathfrak{g}^{-}\right)$it follows that

$$
U_{q}\left(\mathfrak{g}^{-}\right) F_{j}^{c_{j}+1} \in \operatorname{span}_{\mathbb{k}}\left\{B_{\vec{w}(j)} \cap U_{q}\left(\mathfrak{g}^{-}\right) F_{j}^{c_{j}+1}\right\}
$$

Let $\mathbb{e}=\left(\ldots, e_{M}\right) E_{\vec{w}(j)}^{\mathbb{セ}} \in U_{q}\left(\mathfrak{g}^{-}\right) F_{j}^{c_{j}+1}=S_{j}$ (this means $e_{M} \geq c_{j}+1$). We claim that $b_{\vec{w}(j)}^{\mathbb{e}} \in S_{j}$. Indeed since

$$
b_{\vec{w}(j)}^{\mathbb{e}}=E_{\vec{w}(j)}^{\mathbb{e}}+\sum_{\mathbb{e}^{\prime}>\mathbb{C}} a_{\mathbb{e}}^{\mathbb{e}^{\prime}}(q) E_{\stackrel{\mathbb{e}^{\prime}}{\vec{w}}(j)}
$$

and by definition $\mathbb{e}^{\prime}>\mathbb{e}$ means that $e_{M}^{\prime}>e_{M} \geq c_{j}+1$. Thus all elements on the RHS above are in S_{j} and so $b_{\vec{w}(j)}^{\mathbb{Q}} \in S_{j}$. Because the change of basis matrix from $\left\{b_{\vec{w}(j)}^{\mathbb{e}}\right\}$ to $E_{\vec{w}(j)}^{\mathbb{e}}$ is upper triangular $\forall j$ and $\left\{b_{\vec{w}(j)}^{\stackrel{\oplus}{e}}\right\}=C B_{\mathfrak{g}}$ by Theorem 1 and thus

$$
U_{q}\left(\mathfrak{g}^{-}\right) F_{j}^{c_{j}+1} \in \operatorname{span}_{\mathbb{k}}\left\{C B_{\mathfrak{g}} \cap U_{q}\left(\mathfrak{g}^{-}\right) F_{j}^{c_{j}+1}\right\} \quad \forall j
$$

Remark. In other words the fact that we had multiple PBW bases for $U_{q}\left(\mathfrak{g}^{-}\right)$was a feature, not a bug of the theory.

2 The Super Case

2.1 $\mathbf{P B W}$ for $U_{q}(\mathfrak{g l}(m \mid 1))$

In this section we only work with $U_{q}(\mathfrak{g l}(m \mid 1))$.

Theorem 2 (Clark)
Let C be a super Cartan matrix for $U_{q}(\mathfrak{g l}(m \mid 1))$ and set $D=s_{i}(C)$. Then define $T_{i}^{s}: U_{q}(C) \rightarrow$ $U_{q}(D)$ as

$$
T_{i}^{s}\left(E_{C, j}\right)=\left\{\begin{array}{lr}
-F_{D, i} K_{D, i} & \text { if } j=i \\
E_{D, i} E_{D, j}-(-1)^{p_{D}(i) p_{D}(j)} q^{D_{i j}} E_{D, j} E_{D, i} & \text { if } j \sim i \\
E_{D, j} & \text { if } j \nsim i
\end{array}\right.
$$

We omit the definition for the other generators. Then T_{i}^{s} is a \mathbb{Z}_{2}-algebra isomorphism.

Proposition 2.1 (Clark). The T_{i}^{s} satisfy braid relations of type A between appropriate $U_{q}(C)$, i.e. if $i \nsim j$, given a super Cartan matrix B, let $C=s_{i}(B), D=s_{j}(C)$, then as maps $U_{q}(B) \rightarrow U_{q}(D)$ $T_{i}^{s} T_{j}^{s}=T_{j}^{s} T_{i}^{s}$, and similarly with $i \sim j$.

Theorem 3 (Clark)

Fix Π for $\mathfrak{g l}(m \mid 1)$ and let $C=C_{\Pi}$. Fix a reduced expression $\vec{i}=s_{i_{1}} \ldots s_{i_{K}}$ for $w_{0} \in S_{m+1}$. Define $\beta_{t}^{\Pi}=s_{i_{1}} \cdots s_{i_{t-1}}\left(\alpha_{i_{t}}^{\Pi}\right)$ and let $C_{\vec{i}, t}=s_{t-1} \cdots s_{i_{1}}(C)\left(s o C_{\vec{i}, 1}=C\right)$. Finally let

$$
\begin{aligned}
E_{\vec{i}: \beta_{1}^{\Pi}} & :=E_{C, i_{1}} \\
E_{\vec{i}: \beta_{2}^{\Pi}} & =T_{i_{1}}^{s}\left(E_{C_{\vec{i}, 2}, i_{2}}\right) \\
& \vdots \\
E_{\vec{i}: \beta_{t}^{\Pi}} & :=T_{i_{1}}^{s} \ldots T_{i_{t-1}}^{s}\left(E_{C_{\vec{i}, t}, i_{t}}\right)
\end{aligned}
$$

and set

$$
B_{\vec{i}}^{\Pi}=\left\{E_{i: \beta_{1}^{\Pi}}^{\left(a_{1}\right)} E_{i: \beta_{2}^{\Pi}}^{\left(a_{2}\right)} \cdots E_{\vec{i}: \beta_{L}^{\Pi}}^{\left(a_{L}\right)} \mid a_{i} \in \mathbb{Z}^{\geq 0}, a_{s}<2 \text { if } p\left(\beta_{s}^{\Pi}\right)=1\right\}
$$

Then $B_{\vec{i}}^{\Pi}$ is a $(P B W)$ basis for $U_{q}^{+}(C)$.

Remark. Because $E_{C_{\vec{i}, t}, i_{t}} \in U_{q}\left(C_{\vec{i}, t}\right)=U_{q}\left(s_{t-1} \ldots s_{i_{1}}(C)\right)$ we see that

$$
T_{i_{1}}^{s} \ldots T_{i_{t-1}}^{s}\left(E_{C_{\vec{i}, t}, i_{t}}\right) \in U_{q}\left(\left(s_{i_{1}} \ldots s_{i_{t-1}}\right)\left(s_{i_{t-1}} \ldots s_{i_{1}}\right)(C)\right)=U_{q}(C)
$$

The miracle is that it's in fact in $U_{q}^{+}(C)$.
Example 1. For $U_{q}(\mathfrak{g l}(2 \mid 1))$ let $\Pi=\left\{\alpha_{1}, \alpha_{2}\right\}$ where α_{2} is isotropic. $D(\Pi)$ will then be

Let $E_{(12)}=E_{1} E_{2}-q^{-1} E_{2} E_{1}$ and let $\vec{i}=s_{1} s_{2} s_{1}$, then

$$
B_{\vec{i}}^{\Pi}=\left\{E_{1}^{(r)} E_{(12)}^{b} E_{2}^{a} \mid 0 \leq a, b \leq 1, r \geq 0\right\}
$$

aka this is exactly the same as for $U_{q}\left(\mathfrak{s l}_{3}\right)$ except $a, b \leq 1$.

2.2 Canonical Bases: $U_{q}(\mathfrak{g l}(m \mid 1))$ Standard

Theorem 2.2 (Clark). Let \vec{i} be a reduced expression for w_{0} and fix Π for $\mathfrak{g l}(m \mid 1)$ to be the standard Borel, aka the decorated Dynkin diagram will be

Let $\mathcal{L}_{\vec{i}}^{\Pi}=\operatorname{span}_{\mathbb{Z}\left[q^{-1]}\right]} B_{\vec{i}}^{\Pi}$
(i) The $\mathbb{Z}\left[q^{-1}\right]$ module $\mathcal{L}_{\vec{i}}^{\Pi}$ is independent of \vec{i}.
(ii) Let $\pi: \mathcal{L}_{\vec{i}}^{\Pi} \rightarrow \mathcal{L}_{\vec{i}}^{\Pi} / q^{-1} \mathcal{L}_{\vec{i}}^{\Pi}$. Then $\pi\left(B_{\vec{i}}^{\Pi}\right)$ is independent of \vec{i}.

Proof. Like in the classical case it suffices to do this for rank 2. For the standard Borel, there is only one isotropic root. As in Theorem 1.1 a key input for the proof is prior knowledge of what the canonical basis of $U_{q}^{+}\left(\mathfrak{g l}(2 \mid 1)_{\Pi}\right)$ is. $[\mathrm{K}] /[\mathrm{CHW} 3]$ writes this down as

$$
C B_{\mathfrak{g l}(2 \mid 1)_{\Pi}}=\left\{E_{1}^{(r)}, E_{1}^{(r)} E_{2}, E_{2} E_{1}^{(r+1)}, E_{2} E_{1}^{(r+1)} E_{2} \mid r \geq 0\right\}
$$

[CHW3] then does the relevant computation to show these can be written as \mathbb{k}-linear sums of elements in $B_{\vec{i}}^{\Pi}$.

Corollary 2.3. Let $\lambda \in \Lambda^{+}$for $\mathfrak{g l}(m \mid 1)$ and let Π be the standard Borel. Let $\pi_{\lambda}: U_{q}^{-}\left(\mathfrak{g l}(m \mid 1)_{\Pi}\right) \rightarrow$ $U_{q}^{-}\left(\mathfrak{g l}(m \mid 1)_{\Pi}\right) / I_{\lambda}=K(\lambda)$ where $K(\lambda)$ is the Kac module of highest weight λ. Then

$$
B_{\lambda}=\left\{\pi_{\lambda}(b) \mid b \in C B_{\mathfrak{g l}(m \mid 1)_{\Pi}}, b \notin I_{\lambda}\right\}
$$

is a basis for $K(\lambda)$.

2.3 Canonical Bases: $U_{q}(\mathfrak{g l}(2 \mid 1))$ all isotropic

Here we have that $D(\Pi)$ is

Now when we construct the PBW bases $B_{\vec{i}}^{\Pi}$ and set $\mathcal{L}_{\vec{i}}=\operatorname{span}_{\mathbb{Z}[q]} B_{\vec{i}}, \mathcal{L}_{\vec{i}}$ is dependent on \vec{i} !
Example 2. Let $\vec{i}=s_{1} s_{2} s_{1}$ and $\vec{j}=s_{2} s_{1} s_{2}$. We then compute

$$
\begin{aligned}
& \left(B_{\vec{i}}\right)_{2 \alpha_{1}+2 \alpha_{2}}=\left\{E_{1} E_{2} E_{1} E_{2}, \frac{E_{2} E_{1} E_{2} E_{1}}{[2]}+q^{2} \frac{E_{1} E_{2} E_{1} E_{2}}{[2]}\right\} \\
& \left(B_{\vec{j}}\right)_{2 \alpha_{1}+2 \alpha_{2}}=\left\{E_{2} E_{1} E_{2} E_{1}, \frac{E_{1} E_{2} E_{1} E_{2}}{[2]}+q^{2} \frac{E_{2} E_{1} E_{2} E_{1}}{[2]}\right\}
\end{aligned}
$$

And thus

$$
E_{1} E_{2} E_{1} E_{2}=[2]\left(\frac{E_{1} E_{2} E_{1} E_{2}}{[2]}+q^{2} \frac{E_{2} E_{1} E_{2} E_{1}}{[2]}\right)-q^{-2}\left(E_{2} E_{1} E_{2} E_{1}\right)
$$

and so we see that $E_{1} E_{2} E_{1} E_{2}$ is in neither the $\mathbb{Z}[q]$ or the $\mathbb{Z}\left[q^{-1}\right]$ span of $B_{\vec{j}}$.

