Canonical Bases for $U_q(\mathfrak{gl}(m|1))$

Cailan Li March 22nd, 2023

1 Canonical Bases: The Classical Case

Let \mathfrak{g} be a simply laced of finite type with Weyl group W.

Theorem 1.1 (Lusztig). Let \vec{i} be a reduced expression for w_0 . Let $\mathcal{L}_{\vec{i}} = \operatorname{span}_{\mathbb{Z}[q^{-1}]} B_{\vec{i}}$

- (i) The $\mathbb{Z}[q^{-1}]$ module $\mathcal{L}_{\vec{i}}$ is independent of \vec{i} .
- (ii) Let $\pi: \mathcal{L}_{\vec{i}} \to \mathcal{L}_{\vec{i}}/q^{-1}\mathcal{L}_{\vec{i}}$. Then $\pi(B_{\vec{i}})$ is independent of \vec{i} .

Proof. We sketch the steps. Using the braid operators T_i one can reduce both statements to the rank 2 case where $\vec{i} = (i, j, i) \ \vec{j} = (j, i, j), \ i \cdot j = -1$.

(i) By definition,

$$\mathcal{L}_{\vec{j}} = \bigoplus_{(c_1, c_2, c_3) \in \mathbb{N}^3} \mathbb{Z}[q^{-1}] E_{\vec{j}}^{(c_1, c_2, c_3)} \quad \text{where } E_{\vec{j}}^{(c_1, c_2, c_3)} = E_j^{(c_1)} (E_i E_j - q^{-1} E_j E_i)^{(c_2)} E_i^{(c_3)}$$

What Lusztig does is to show both $\mathcal{L}_{\vec{i}}$ equals $\mathcal{L} = \operatorname{span}_{\mathbb{Z}[q^{-1}]}CB$ where

$$CB = \left\{ E_i^{(p)} E_j^{(q)} E_i^{(r)} \, | q \ge p + r \right\} \cup \left\{ E_j^{(p)} E_i^{(q)} E_j^{(r)} \, | q \ge p + r \right\} \quad E_i^{(a)} E_j^{(b)} E_i^{(b-a)} = E_j^{(b-a)} E_i^{(b)} E_j^{(a)} E_j^{(a)} = E_j^{(b-a)} E_i^{(b)} E_j^{(a)} E_j^{(a)} = E_j^{(b)} E_j^{(a)} E_j^{(b)} = E_j^{(b)} E_j^{(a)} = E_j^{(b)} E_j^{(b)} = E_j^{(b)} = E_j^{(b)} E_j^{(b)} = E$$

by showing that when $q \ge p + r$,

$$E_i^{(p)} E_j^{(q)} E_i^{(r)} = \sum_{n=0}^p a_n E_{\vec{j}}^{(q-n,n,p-n+r)} \qquad a_n \in \begin{cases} q^{-1} \mathbb{Z}[q^{-1}] & \text{if } n (1)$$

and similarly with i and j swapped which shows $\mathcal{L} \subseteq \mathcal{L}_{\vec{j}}$ and the other inclusion is clear. Now the trick is to note that the roles of i and j are symmetric so we will automatically have $\mathcal{L}_{\vec{i}} = \mathcal{L}$ as well.

(*ii*) We use the same strategy, showing that $\pi(B_{\vec{j}}) = \pi(CB)$ for any \vec{j} . Using Eq. (1) we see that when $q \ge p + r$

$$\pi(E_i^{(p)}E_j^{(q)}E_i^{(r)}) = \pi(E_{\vec{j}}^{(q-p,p,r)}), \qquad \pi(E_j^{(p)}E_i^{(q)}E_j^{(r)}) = \pi(E_{\vec{j}}^{(p,r,q-r)})$$

But notice that because $q - p \ge r$ we have that

$$\left\{\pi(E_{\vec{j}}^{(q-p,p,r)})\right\}_{q-p\geq r} = \left\{\pi(E_{\vec{j}}^{(a,b,c)})\right\}_{a\geq c}$$

and similarly one can check that

$$\left\{\pi(E_{\vec{j}}^{(p,r,q-r)})\right\}_{q-p\geq r} = \left\{\pi(E_{\vec{j}}^{(a,b,c)})\right\}_{a\leq c}$$

and thus $\pi(B_{\vec{j}}) = \pi(CB)$ for any \vec{j} as desired.

1.1 Bar Involution

Definition 1.2. The bar involution — on $U_q(\mathfrak{g}^+)$ is the \mathbb{Q} algebra involution defined on generators by

$$\overline{E_i} = E_i, \qquad \overline{q} = q^-$$

Definition 1.3. Let $M = |\Phi^+|$. Consider the total orders on $\mathbb{N}^M >_l$ and $>_r$ where

- $e >_l d$ if $c_1 > d_1$ or $c_1 = d_1$ and $(c_2, \ldots) >_l (c_2, \ldots)$, etc.
- $e >_r d$ if $c_M > d_M$ or $c_M = d_M$ and $(\dots, c_{M-1}) >_r (\dots, d_{M-1})$, etc.

Define the partial order e > d if $e >_l d$ and $e >_r d$

Proposition 1.4. For every reduced expression \vec{i} we have that

$$\overline{E^{\mathrm{e}}_{\vec{i}}} = E^{\mathrm{e}}_{\vec{i}} + \sum_{\mathrm{e}' > \mathrm{e}} r^{\mathrm{e}'}_{\mathrm{e}}(q) E^{\mathrm{e}}_{\vec{i}}$$

where $r_{e}^{e'}(q)$ are Laurent polynomials in q.

Remark. The sum on the RHS above is finite, only e' in the same weight space as e can appear.

Theorem 1 For each reduced expression \vec{i} of w_0 there is a unique basis $\left\{b_{\vec{i}}^{e}\right\}_{e \in \mathbb{N}^M}$ of $U_q(\mathfrak{g}^+)$ contained in \mathcal{L} such that (i) $\overline{b_{\vec{i}}^{e}} = b_{\vec{i}}^{e}$ (self-duality) (ii) $b_{\vec{i}}^{e} = E_{\vec{i}}^{e} + \sum_{e' \geq e} a_{e}^{e'}(q) E_{\vec{i}}^{e'}$ where $a_{e}^{e'}(q) \in q^{-1}\mathbb{Z}[q^{-1}]$ for any \vec{i} . (degree bound)

Moreover $CB_{\mathfrak{g}} := \left\{ b^{\mathfrak{e}}_{\vec{i}} \right\}_{\mathfrak{e} \in \mathbb{N}^M}$ is independent of \vec{i} and is called the canonical basis of $U_q(\mathfrak{g}^+)$.

Proof. Existence: Fix e minimal. Then Proposition 1.4 shows that $\overline{E_i^e} = E_i^e$ and thus we can set $b^e = E_i^e$. Now for e non-minimal by Proposition 1.4 and induction one can write

$$\overline{E^{\mathrm{e}}_{\vec{i}}} = E^{\mathrm{e}}_{\vec{i}} + \sum_{\mathrm{e}' > \mathrm{e}} p^{\mathrm{e}'}_{\mathrm{e}}(q) b^{\mathrm{e}'}$$

where the $p_{e}^{e'}(q)$ are Laurent polynomials. Now by bar invariance of $b^{e'}$ and Proposition 1.4 we see that

$$E_{\vec{i}}^{e} = \overline{\overline{E_{\vec{i}}^{e}}} = \left(E_{\vec{i}}^{e} + \sum_{e' > e} p_{e}^{e'}(q)b^{e'}\right) + \sum_{e' > e} p_{e}^{e'}(q^{-1})b^{e'} \implies p_{e}^{e'}(q) = -p_{e}^{e'}(q^{-1})b^{e'} \implies p_{e}^{e'}(q) = -p_{e}^{e'}(q)b^{e'} \implies p_{e}^{e'}(q) = -p_{e}^{e'}(q^{$$

Because $p_{e}^{e'}(q)$ are Laurent polynomials it actually follows that

$$p_{e}^{e'}(q) = q^{-1} f_{e}^{e'}(q^{-1}) - q f_{e}^{e'}(q)$$

where $f_{e}^{e'}(q)$ is a polynomial. Now set

$$b_{\vec{i}}^{\mathrm{e}} = E_{\vec{i}}^{\mathrm{e}} + \sum_{\mathrm{e}' > \mathrm{e}} q^{-1} f_{\mathrm{e}}^{\mathrm{e}'}(q^{-1}) b_{\vec{i}}^{\mathrm{e}'}$$

By construction b^{e} satisfies (*ii*), and we compute

$$\overline{b_{\vec{i}}^{e}} = \left(E_{\vec{i}}^{e} + \sum_{e' > e} q^{-1} f_{e}^{e'}(q^{-1}) b_{\vec{i}}^{e'} - \sum_{e' > e} q f_{e}^{e'}(q) b_{\vec{i}}^{e'} \right) + \sum_{e' > e} q f_{e}^{e'}(q) b^{e'} = b_{\vec{i}}^{e}$$

and thus $b_{\vec{i}}^{e}$ satisfies (i) as well.

<u>Uniqueness</u>: For each \vec{i} , $b_{\vec{i}}^{e}$ is unique by the same argument as for KL basis, look at [EMTW] Chapter 3. Independence of \vec{i} : For $\vec{j} \neq \vec{i}$ another reduced expression for w_0 notice

$$\pi(b_{\vec{i}}^{e}) = \pi(E_{\vec{i}}^{e}) \xrightarrow{\text{Theorem } 1.1} \pi(E_{\vec{j}}^{d}) = \pi(b_{\vec{j}}^{d})$$

Because $\left\{b_{\vec{i}}^{e}\right\}$ is unit triangular to $\left\{E_{\vec{i}}^{e}\right\}$ it follows that $\left\{b_{\vec{i}}^{e}\right\}$ is also a basis for $\mathcal{L}_{\vec{i}}$ and thus

$$b^{\mathrm{e}}_{\vec{i}} - b^{\mathrm{d}}_{\vec{j}} = \sum_{\mathrm{e}} h^{\mathrm{e}}(q) b^{\mathrm{e}}_{\vec{i}}, \qquad h^{\mathrm{e}}(q) \in q^{-1} \mathbb{Z}[q^{-1}]$$

The LHS is bar-invariant and so are the basis vectors on the RHS. This implies $h^{e}(q) \in q^{-1}\mathbb{Z}[q^{-1}] \cap q\mathbb{Z}[q] = 0$ as desired.

Remark. The existence proof above also works for the KL basis, but the construction is more inefficient than the one in [EMTW].

Remark. Eq. (1) shows that $CB = CB_{\mathfrak{sl}_3}$. All of the above also works for $U_q(\mathfrak{g}^-)$ and we will also write $CB_{\mathfrak{g}}$ for the canonical basis of $U_q(\mathfrak{g}^-)$.

Corollary 1.5. Let $\lambda \in \Lambda^+$ and let $\pi_{\lambda} : U_q(\mathfrak{g}^-) \to U_q(\mathfrak{g}^-)/I_{\lambda} = L(\lambda)$. Then

$$B_{\lambda} = \{ \pi_{\lambda}(b) \mid b \in CB_{\mathfrak{g}}, b \notin I_{\lambda} \}$$

is a basis for $L(\lambda)$.

Proof. Step 1: B_{λ} is a basis $\iff CB_{\mathfrak{g}} \cap I_{\lambda}$ spans I_{λ} as a k v.s. We leave this as an exercise for the reader. Now write $\lambda = \sum c_i \omega_i$ as a sum of fundamental weights and note

$$I_{\lambda} = \sum_{j \in I} U_q(\mathfrak{g}^-) F_j^{c_j + 1}$$

Thus we see that it suffices to show Step 2: $U_q(\mathfrak{g}^-)F_j^{c_j+1} \in \operatorname{span}_{\mathbb{k}}\left\{CB_{\mathfrak{g}} \cap U_q(\mathfrak{g}^-)F_j^{c_j+1}\right\} \ \forall j.$ We first need a lemma

Lemma 1.6. Let \vec{i} be a reduced expression for w_0 . Suppose that $\beta_t = s_{i_1} \cdots s_{i_{t-1}}(\alpha_{i_t}) = \alpha_k$ for $\alpha_k \in \Pi$ a simple root. Then we have that $F_{\vec{i},\beta_t} = F_k$.

Now notice that

$$\beta_M = s_{i_1} \cdots s_{i_{M-1}}(\alpha_{i_M}) = s_{i_1} \cdots s_{i_{M-1}} s_{i_M}(-\alpha_{i_M}) = -w_0(\alpha_{i_M})$$

Note $-w_0: \Phi^+ \to \Phi^+$ and because w_0 is linear it restricts to $-w_0: \Pi \to \Pi$ and so $-w_0(\alpha_{i_M}) = \alpha_\ell$ for some ℓ . Thus using the lemma above it follows that

$$F_{\vec{i},\beta_M} = F_\ell$$
3 of 6

$$F_{\overrightarrow{w}(j),\beta_M} = F_j$$

And since $B_{\overrightarrow{w}(j)}$ is a basis for $U_q(\mathfrak{g}^-)$ it follows that

$$U_q(\mathfrak{g}^-)F_j^{c_j+1} \in \operatorname{span}_{\Bbbk}\left\{B_{\overrightarrow{w}(j)} \cap U_q(\mathfrak{g}^-)F_j^{c_j+1}\right\}$$

Let $e = (\dots, e_M) E^{e}_{\overrightarrow{w}(j)} \in U_q(\mathfrak{g}^-) F_j^{c_j+1} = S_j$ (this means $e_M \ge c_j + 1$). We claim that $b^{e}_{\overrightarrow{w}(j)} \in S_j$. Indeed since

$$b_{\overrightarrow{w}(j)}^{\mathbf{e}} = E_{\overrightarrow{w}(j)}^{\mathbf{e}} + \sum_{\mathbf{e}' > \mathbf{e}} a_{\mathbf{e}}^{\mathbf{e}'}(q) E_{\overrightarrow{w}(j)}^{\mathbf{e}'}$$

and by definition e' > e means that $e'_M > e_M \ge c_j + 1$. Thus all elements on the RHS above are in S_j and so $b^{e}_{\overrightarrow{w}(j)} \in S_j$. Because the change of basis matrix from $\left\{b^{e}_{\overrightarrow{w}(j)}\right\}$ to $E^{e}_{\overrightarrow{w}(j)}$ is upper triangular $\forall j$ and $\left\{b^{e}_{\overrightarrow{w}(j)}\right\} = CB_{\mathfrak{g}}$ by Theorem 1 and thus

$$U_q(\mathfrak{g}^-)F_j^{c_j+1} \in \operatorname{span}_{\Bbbk}\left\{CB_{\mathfrak{g}} \cap U_q(\mathfrak{g}^-)F_j^{c_j+1}\right\} \qquad \forall j$$

Remark. In other words the fact that we had multiple PBW bases for $U_q(\mathfrak{g}^-)$ was a feature, not a bug of the theory.

2 The Super Case

2.1 PBW for $U_q(\mathfrak{gl}(m|1))$

In this section we only work with $U_q(\mathfrak{gl}(m|1))$.

Theorem 2 (Clark) Let C be a super Cartan matrix for $U_q(\mathfrak{gl}(m|1))$ and set $D = s_i(C)$. Then define $T_i^s : U_q(C) \to U_q(D)$ as $(-E_D : K_D)$ if i = i

$$T_{i}^{s}(E_{C,j}) = \begin{cases} -F_{D,i}K_{D,i} & \text{if } j = i \\ E_{D,i}E_{D,j} - (-1)^{p_{D}(i)p_{D}(j)}q^{D_{ij}}E_{D,j}E_{D,i} & \text{if } j \sim i \\ E_{D,j} & \text{if } j \neq i \end{cases}$$

We omit the definition for the other generators. Then T_i^s is a \mathbb{Z}_2 -algebra isomorphism.

Proposition 2.1 (Clark). The T_i^s satisfy braid relations of type A between appropriate $U_q(C)$, i.e. if $i \not\sim j$, given a super Cartan matrix B, let $C = s_i(B), D = s_j(C)$, then as maps $U_q(B) \rightarrow U_q(D)$ $T_i^s T_j^s = T_j^s T_i^s$, and similarly with $i \sim j$. **Theorem 3** (Clark) Fix Π for $\mathfrak{gl}(m|1)$ and let $C = C_{\Pi}$. Fix a reduced expression $\vec{i} = s_{i_1} \dots s_{i_K}$ for $w_0 \in S_{m+1}$. Define $\beta_t^{\Pi} = s_{i_1} \cdots s_{i_{t-1}}(\alpha_{i_t}^{\Pi})$ and let $C_{\vec{i},t} = s_{t-1} \cdots s_{i_1}(C)$ (so $C_{\vec{i},1} = C$). Finally let

$$\begin{split} E_{\vec{i}:\beta_{1}^{\Pi}} &:= E_{C,i_{1}} \\ E_{\vec{i}:\beta_{2}^{\Pi}} &:= T_{i_{1}}^{s}(E_{C_{\vec{i},2},i_{2}}) \\ &\vdots \\ E_{\vec{i}:\beta_{t}^{\Pi}} &:= T_{i_{1}}^{s}\dots T_{i_{t-1}}^{s}(E_{C_{\vec{i},t},i_{t}}) \\ &\vdots \end{split}$$

and set

$$B_{\vec{i}}^{\Pi} = \left\{ E_{\vec{i}:\beta_{1}^{\Pi}}^{(a_{1})} E_{\vec{i}:\beta_{2}^{\Pi}}^{(a_{2})} \cdots E_{\vec{i}:\beta_{L}^{\Pi}}^{(a_{L})} \left| a_{i} \in \mathbb{Z}^{\geq 0}, a_{s} < 2 \text{ if } p(\beta_{s}^{\Pi}) = 1 \right\}$$

Then $B_{\vec{i}}^{\Pi}$ is a (PBW) basis for $U_q^+(C)$.

Remark. Because $E_{C_{\vec{i},t},i_t} \in U_q(C_{\vec{i},t}) = U_q(s_{t-1} \dots s_{i_1}(C))$ we see that

$$T_{i_1}^s \dots T_{i_{t-1}}^s (E_{C_{i_t,t}^s, i_t}) \in U_q((s_{i_1} \dots s_{i_{t-1}})(s_{i_{t-1}} \dots s_{i_1})(C)) = U_q(C)$$

The miracle is that it's in fact in $U_q^+(C)$.

Example 1. For $U_q(\mathfrak{gl}(2|1))$ let $\Pi = \{\alpha_1, \alpha_2\}$ where α_2 is isotropic. $D(\Pi)$ will then be

 $\bigcirc --- \otimes$

Let $E_{(12)} = E_1 E_2 - q^{-1} E_2 E_1$ and let $\vec{i} = s_1 s_2 s_1$, then

$$B_{\vec{i}}^{\Pi} = \left\{ E_1^{(r)} E_{(12)}^b E_2^a \, | \, 0 \le a, b \le 1, \ r \ge 0 \right\}$$

aka this is exactly the same as for $U_q(\mathfrak{sl}_3)$ except $a, b \leq 1$.

2.2 Canonical Bases: $U_q(\mathfrak{gl}(m|1))$ Standard

Theorem 2.2 (Clark). Let \vec{i} be a reduced expression for w_0 and fix Π for $\mathfrak{gl}(m|1)$ to be the standard Borel, aka the decorated Dynkin diagram will be

Let $\mathcal{L}_{\vec{i}}^{\Pi} = \operatorname{span}_{\mathbb{Z}[q^{-1}]} B_{\vec{i}}^{\Pi}$ (i) The $\mathbb{Z}[q^{-1}]$ module $\mathcal{L}_{\vec{i}}^{\Pi}$ is independent of \vec{i} . (ii) Let $\pi : \mathcal{L}_{\vec{i}}^{\Pi} \to \mathcal{L}_{\vec{i}}^{\Pi}/q^{-1}\mathcal{L}_{\vec{i}}^{\Pi}$. Then $\pi(B_{\vec{i}}^{\Pi})$ is independent of \vec{i} .

Proof. Like in the classical case it suffices to do this for rank 2. For the standard Borel, there is only one isotropic root. As in Theorem 1.1 a key input for the proof is prior knowledge of what the canonical basis of $U_q^+(\mathfrak{gl}(2|1)_{\Pi})$ is. [K]/[CHW3] writes this down as

$$CB_{\mathfrak{gl}(2|1)_{\Pi}} = \left\{ E_1^{(r)}, \ E_1^{(r)} E_2, \ E_2 E_1^{(r+1)}, \ E_2 E_1^{(r+1)} E_2 | r \ge 0 \right\}$$

[CHW3] then does the relevant computation to show these can be written as \mathbb{k} -linear sums of elements in $B_{\vec{i}}^{\Pi}$.

Corollary 2.3. Let $\lambda \in \Lambda^+$ for $\mathfrak{gl}(m|1)$ and let Π be the standard Borel. Let $\pi_{\lambda} : U_q^-(\mathfrak{gl}(m|1)_{\Pi}) \to U_q^-(\mathfrak{gl}(m|1)_{\Pi})/I_{\lambda} = K(\lambda)$ where $K(\lambda)$ is the Kac module of highest weight λ . Then

$$B_{\lambda} = \left\{ \pi_{\lambda}(b) \mid b \in CB_{\mathfrak{gl}(m|1)_{\Pi}}, b \notin I_{\lambda} \right\}$$

is a basis for $K(\lambda)$.

2.3 Canonical Bases: $U_q(\mathfrak{gl}(2|1))$ all isotropic

Here we have that $D(\Pi)$ is

$$\otimes - - \otimes$$

Now when we construct the PBW bases $B_{\vec{i}}^{\Pi}$ and set $\mathcal{L}_{\vec{i}} = \operatorname{span}_{\mathbb{Z}[q]} B_{\vec{i}}$, $\mathcal{L}_{\vec{i}}$ is dependent on \vec{i} ! **Example 2.** Let $\vec{i} = s_1 s_2 s_1$ and $\vec{j} = s_2 s_1 s_2$. We then compute

$$(B_{\vec{i}})_{2\alpha_1+2\alpha_2} = \left\{ E_1 E_2 E_1 E_2, \frac{E_2 E_1 E_2 E_1}{[2]} + q^2 \frac{E_1 E_2 E_1 E_2}{[2]} \right\}$$
$$(B_{\vec{j}})_{2\alpha_1+2\alpha_2} = \left\{ E_2 E_1 E_2 E_1, \frac{E_1 E_2 E_1 E_2}{[2]} + q^2 \frac{E_2 E_1 E_2 E_1}{[2]} \right\}$$

And thus

$$E_1 E_2 E_1 E_2 = [2] \left(\frac{E_1 E_2 E_1 E_2}{[2]} + q^2 \frac{E_2 E_1 E_2 E_1}{[2]} \right) - q^{-2} \left(E_2 E_1 E_2 E_1 \right)$$

and so we see that $E_1 E_2 E_1 E_2$ is in neither the $\mathbb{Z}[q]$ or the $\mathbb{Z}[q^{-1}]$ span of $B_{\vec{i}}$.